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Text S1: Reconstructing the annual net accumulation record and the effect of MSA 
migration 
 
The reconstructed annual net accumulation (An) record provides a proxy-based history of 
precipitation for the Bruce Plateau (BP).  An is derived from the annual layer thicknesses 
determined using the excellently preserved summer peaks in MSA (Figures S1 and S2).  The 
firn/ice thickness of each annual layer was converted to a water equivalent (w.e.) thickness using 
the depth-density model constructed from the densities measured immediately after the ice was 
recovered from the drill.  The well preserved MSA summer concentration peaks also provide a 
straightforward mechanism for dating the core (Figures S1 and S2).  Figure S1 shows the 
summer MSA peaks for the section of the BP core from 100 to 150 m that contains snow 
deposited between 1978 and 1945 CE, respectively.  Included also are the beta radioactivity 
values, with the elevated concentrations of gross beta radioactivity from thermonuclear testing 
that arrived in Antarctica in 1964/65 [Pourchet et al., 1983] providing additional confidence in 
the time scale.   
 
Each annual layer thickness (in w.e.) must be adjusted to its original thickness by accounting for 
the thinning and compaction imposed during its continued burial by the newly accumulating 
snow.  To accomplish this, the Dansgaard and Johnsen [1969] model, a modified version of the 
Nye model [Nye, 1963], was used and adjusted for flank flow.  The adjustment for flank flow is 
applied when the distance from the ice divide (2 km in the case of the BP drill site) exceeds 
twice the ice thickness (448.12 m).  For flank flow the parameter h/H, where H is the thickness 
of the ice sheet and h is the height above the bed of the transition from linear to constant flow, 
was set to 0.2 [MacGregor et al., 2012]. Thus, the model approximates a constant strain rate over 
the upper 80% of the ice thickness (0 to 358.5 m) and thereafter applies a linearly decreasing 
strain rate to the bed (358.5 to 448.12 m).   
 
MSA has been shown to migrate with depth such that MSA deposited in the summer may 
eventually migrate to the winter layer below [Pasteur and Mulvaney, 2000; Thomas and Abram, 
2016].  This is not an issue throughout most of the BP core and certainly not for the time interval 
discussed in this paper (1900 - 2009 CE).  Accumulation on the BP is very high (an average of 
1.84 m w.e. from 1900 to 2009), the ice is very cold (see text), and the core contains virtually no 
evidence of melt.  The best evidence for MSA migration comes from comparing the 
concentrations of MSA with contemporaneous (i.e., measured on the same sample) 
concentrations of non-sea-salt sulfate (NSSS), which does not exhibit migration [Pasteur and 
Mulvaney, 2000; Thomas and Abram, 2016].  In Figure S2 the MSA and NSSS concentrations 
are plotted for 4 different sections of the BP ice core.  Note that MSA migration does not exist at 
330 m (1731 CE) and remains very modest at 382 m (1555 CE).  However, at 395 m (~1447 CE) 
MSA exhibits significant migration such that the reconstructed thickness of the annual layers 
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Figure S2. Concentrations of MSA (red) and non-sea-salt sulfate (black) measured on the same 
sample and shown with depth in 4 discrete sections of the Bruce Plateau core. These allow 
examination of the progressive migration of MSA with depth. 
 
 
 
 
Text S2. Accumulation history on the Bruce Plateau and over the Antarctic Peninsula 
 
Ice-core-derived accumulation histories from the Antarctic Peninsula (AP) are limited, represent 
geographically different regions, and show a fairly consistent pattern of increasing in snowfall 
(accumulation) over the 20th century, particularly after 1940.  Figure S3 illustrates the only 
available annually resolved records.  Two of the cores (Bruce Plateau and Gomez) were drilled 
more recently (2010 and 2007, respectively), so they better capture the very strong increase in 
accumulation rate that began in 1980.  Although these two core sites are both located along the 
west side of the AP, Bruce Plateau (66.03°S; 64.07°W; 1975.5 masl) is in the northwest and 
Gomez (73.59ºS; 70.36ºW; 1400 masl) is in the southwest [Thomas et al., 2008], suggesting that 
the strong post-1970 accumulation increase is widespread, at least along the west coast.  In 
contrast, the core from the Dyer Plateau, a broad ice field centrally located between the east and 
west coasts of AP (77.80ºS; 64.52ºW; 2002 masl), was drilled in 1988 [Thompson et al., 1994].  
James Ross Island (JRI) is located at the northeastern tip of the AP (64.2ºS; 57ºW; 1600 masl), 
and this core was drilled in 1998 [Miles et al., 2008].  A new core was drilled on JRI in 2009 but 
the accumulation data have not been published or released to a public database at this time.   
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